skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chhabria, Vidya A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents an analytical approach for analyzing electromigration (EM) in modern technologies that use copper dual damascene (Cu DD) interconnects. In these technologies, due to design rule and methodology constraints, wires are typically laid out unidirectionally in each metal layer; since EM in Cu DD interconnects do not cross layer boundaries, the problem reduces to one of analyzing EM in multisegment interconnect lines. In contrast with traditional empirical methodologies, our approach is based on physics-based modeling, directly solving the differential equations that model EM-induced stress. This article places a focus on interconnect lines, for reasons described above, and introduces the new concept of boundary reflections of stress flux that ascribes a physical (wave-like) analogy to the transient stress behavior in a finite multisegment line. This framework is used to derive analytical expressions of transient EM stress for lines with any number of segments, which can also be tailored to include the appropriate number of terms for any desired level of accuracy. The approach is applied to both the nucleation phase and the postvoiding phase on large power grid benchmarks. These experiments demonstrate excellent accuracy as compared to accurate numerical solution, as well as linear complexity with the number of segments for evaluating stress at a specified point and time. 
    more » « less
    Free, publicly-accessible full text available July 31, 2026
  2. Free, publicly-accessible full text available November 2, 2025
  3. Free, publicly-accessible full text available January 1, 2026
  4. null (Ed.)
  5. Modern transistors such as FinFETs and gate-all-around FETs (GAAFETs) suffer from excessive heat confinement due to their small size and three-dimensional geometries, with limited paths to the thermal ambient. This results in device self-heating, which can reduce speed, increase leakage, and accelerate aging. This paper characterizes the temperature for both the 7nm FinFET and 5nm GAAFET sub-structures and analyzes its impact on circuit performance (delay and power) and reliability (bias temperature instability, hot carrier injection, and electromigration). On average, logic gates in a circuit heat up by 12K for 7nm SOI FinFET and by 17K for 5nm GAAFET designs. This rise in temperature accelerates delay degradation due to bias temperature instability and hot carrier injection by up to 25% in FinFET and 39% in GAAFET designs, and also degrades the electromigration-induced time to failure of wires by up to 38% in SOI FinFET and 45% in GAAFET technologies. 
    more » « less